MANDSAUR UNIVERSITY - Faculty of Engineering and Technology

Department of Computer Science & Engineering
SYLLABUS FOR 5 Semester B.Tech PROGRAMME
Compiler Design (CSE340TR1)

Type of Course: B.Tech
Prerequisite:

Rationale: -

Teaching and Examination Scheme:

Teaching Scheme Examination Scheme
Lecture | Tutorial || .\ o Credit External Internal Total
Hrs/ Hrs/
Week | week [Week TH-EST PR-EST Th-MST | CET | Pr-MmsT
2 1 0 3 60 - 30 10 - 100
SEE - Semester End Examination, Th - MST - Mid Semester Test, Pr - MST - Mid Semester Practical
Contents:
Sr. Topic Weightage Teelx_(|:h|ng
rs.
Introduction of Compiler: Introduction of Compiler, Major data
Structure in compiler, BOOT Strapping & Porting, Compiler structure:
1 [analysis-synthesis model of compilation, various phases of a compiler, 20% 9
Lexical analysis: Input buffering, Specification & Recognition of
Tokens, LEX.
Syntax analysis: Syntax analysis: CFGs, Top down parsing, Brute
force approach, recursive descent parsing, Transformation on the
grammars, predictive parsing, bottom up parsing, operator precedence
> parsing, LR parsers (SLR,LALR, LR),Parser generation. Syntax 20% 9

directed definitions: Construction of Syntax trees, Bottom up evaluation
of S-attributed definition, L-attribute definition, Top down translation,
Bottom Up evaluation of inherited attributes Recursive Evaluation,
Analysis of Syntax directed definition

Type checking: Type checking: type system, specification of simple
type checker, equivalence of expression, types, type conversion,

3 |overloading of functions and operations, polymorphic functions. Run 20% 9
time Environment: storage organization, Storage allocation strategies,
parameter passing, Dynamic storage allocation, Symbol table

Intermediate code generation: Intermediate code generation:
Declarations, Assignment statements, Boolean expressions, Case
statements, Back patching, Procedure calls Code Generation: Issues
in the design of code generator, Basic block and flow graphs, Register
allocation and assignment, DAG representation of basic blocks,
peephole optimization, generating code from DAG.

20% 9

Introduction to Code optimization: Introduction to Code optimization:
sources of optimization of basic blocks, loops in flow graphs, dead
5 |code elimination, loop optimization, Introduction to global data flow 20% 9
analysis, Code improving transformations ,Data flow analysis of
structure flow graph Symbolic debugging of optimized code

*Continuous Evaluation:

It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

Reference Books:

Printed on : 22-08-2025 03:14 PM Page 1 of 2

Compiler Construction: Principles and Practice
By Willey Pub.Louden

Compiler Design in C
By A. C. Holub

Compiler Design
By B.S Raghavan

List of Practical:

© ©o N o g bk wbdhPE

=
= o

Write a program in C/C++to check whether a string belongs to the grammar or not.

Write a program in C/C++to identify whether a given string is an identifier or not.
Write a program in C/C++ to check whether a given string is a keyword or not.
Write a program in C/C++ to implement the token separation operation.

Write a program in C/C++ to compute FIRST of non-terminals.

Write a program in C/C++ to compute FOLLOW(A).

Write a program to implement the Lexical analysis using C.

Write a program in C/C++ to implement recursive descendent parsing.

Write a program in C/C++ to calculate LEADING of non terminals.

Write a program in C/C++ to implement the Symbol table operation.

Write a program in C/C++ to implement operator precedence parsing.

Printed on : 22-08-2025 03:14 PM

Page 2 of 2

